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1 Departamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de
Madrid, E-28049 Madrid, Spain
2 European Theoretical Spectroscopy Facility (ETSF), Departamento de Fı́sica de Materiales,
Universidad Paı́s Vasco, Edificio Korta, Avenida Tolosa 72, 20018 San Sebastián, Spain
3 Unidad de Fı́sica de Materiales Centro Mixto CSIC-UPV/EHU and Donostia International
Physics Center (DIPC), 20018 San Sebastián, Spain

E-mail: blanca.biel@cea.fr

Received 16 January 2008
Published 24 June 2008
Online at stacks.iop.org/JPhysCM/20/294214

Abstract
A combination of ab initio simulations and linear-scaling Green’s functions techniques is used
to analyze the transport properties of long (up to 1 μm) carbon nanotubes with realistic
disorder. The energetics and the influence of single defects (monovacancies and divacancies) on
the electronic and transport properties of single-walled armchair carbon nanotubes are analyzed
as a function of the tube diameter by means of the local orbital first-principles Fireball code.
Efficient O(N) Green’s functions techniques framed within the Landauer–Büttiker formalism
allow a statistical study of the nanotube conductance averaged over a large sample of defected
tubes and thus extraction of the nanotube localization length. The cases of zero and room
temperature are both addressed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Carbon nanotubes [1] are one of the most promising materials
for future nanoelectronics due to their unique electrical
transport properties [2]. In perfect single-walled carbon
nanotubes (SWCNTs), ballistic electron conduction has been
observed [3] provided inelastic processes can be neglected. In
this coherent regime, however, the presence of defects, dopants
or other impurities [4] will particularly affect the performance
of the device [5], as it will determine the transport in nanotubes
from a ballistic regime to weak or even strong localization
regimes, where the resistance will increase exponentially with
the length of the system [6].

To fully achieve control on the properties of carbon
nanotubes, it is thus essential to perform accurate analyses of
realistic disorder on carbon nanotube-based devices. Although

4 Present address: CEA, LETI-MINATEC, 17 rue des Martyrs,
38054 Grenoble, Cedex 9, France.

simulation tools based on density functional theory (DFT)
provide great accuracy and are particularly suitable for the
study of defects in a wide range of materials, their applicability
is limited by their poor scaling, which leads to a huge
computational effort when the number of atoms in the system
is larger than a few hundred. This prevents using standard ab
initio techniques to analyze directly the properties of electronic
devices in the mesoscopic scale.

To overcome this limitation, we have combined the use of
standard (no linear-scaling) first-principles methods to extract
the electronic properties of single defects in carbon nanotubes
with the use of O(N) Green’s functions techniques to study the
transport properties of long tubes with a random distribution
of those defects. This approach allows us to calculate
characteristic transport lengths such as the localization length
for different densities of defects, providing an interesting
tool for tuning the transport properties of carbon nanotubes,
for instance, by a controlled creation of the defects [6]
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through irradiation, and was able to predict the existence of
the Anderson localization regime in these carbon systems at
room temperature as long as the electronic phase coherence is
preserved [6, 7]. The emergence of the Anderson localization
phenomenon in chemically doped carbon nanotubes has been
theoretically predicted in other works [8, 9], in which a
similar approach based on a tight-binding modeling from ab
initio calculations of single B or N impurities was used to
characterize the transition between different transport regimes.

2. Theoretical framework

Our analysis of the transport properties of the defected carbon
nanotubes was separated into two steps. First, we studied the
perturbation effect that single, isolated defects have—at zero
temperature—on the geometry and the electronic properties
of an otherwise ideal tube. In a further step, a study of
the transport properties of nanotubes with a more realistic
disorder has been performed, calculating the conductance
along the nanotubes, both at zero and at finite temperature, for
a statistically meaningful sample of nanotubes with different
concentrations of randomly distributed defects.

Our approach combines first-principles calculations to
obtain the effective one-electron Hamiltonian for the defected
nanotubes with non-equilibrium Green’s functions techniques,
which allow the calculation of the conductance for very long—
up to microns—tubes.

2.1. Geometry optimization

In our calculations we have used the ab initio Fireball’96
code [10–12], that provides fast and accurate molecular
dynamics calculations of the geometries and electronic
properties for a wide range of systems. This method uses
localized orbitals, generated by solving the atomic problem
within the DFT-LDA and the pseudopotential approximations.
Norm-conserving pseudopotentials are used, as well as the
Ceperley–Alder form of the exchange–correlation potential as
parametrized by Perdew and Zunger [13]. The forces on each
atom are calculated by means of a variation of the Hellmann–
Feynman theorem, and molecular dynamics studies are used
to obtain the atomic configuration of lowest energy. A self-
consistent implementation of the Harris functional allows us
to avoid the very time-consuming calculation of the electronic
charge density ρ(�r), which is substituted by the calculation of
the orbital occupancies nμ of the ‘fireball’ orbitals φμ, defined
by

ρ(�r) =
∑

μ

nμ|φμ(�r)|2. (1)

This approach allows us to optimize the electronic charge
density ρ according to the chemical environment of the atoms.
The different values of nμ are then obtained by imposing a self-
consistent condition on the orbital occupancies.

In the simulations with Fireball’96 an sp3 basis set of
orbitals was used with a cut-off radius of 2.15 Å. The supercell
contained 12, 10 and 6 unit cells for the (5, 5), (7, 7) and
(10, 10) nanotubes, respectively (the unit cell containing 20,
28 or 40 atoms for each tube). Four special k-points uniformly

distributed along the first Brillouin zone of the nanotubes have
been included. Convergence of the calculations is achieved for
forces acting over each atom being less than 0.01 eV Å

−1
and

changes on the total energy of the system are below 10−3 eV;
the time step was 0.5 fs.

2.2. Transport formalism

The calculation of the conductance has been performed
within the Landauer–Büttiker formalism, more concretely in
the Keldysh (non-equilibrium Green’s functions) formalism,
which is particularly convenient when using a localized basis
set. The differential conductance g between two systems in the
limit of zero temperature and low voltages is given by [14, 15]

g(E) = 4πe2

h̄
Tr[D̂A

11(E)T̂12ρ̂
(0)
22 (E)T̂21 D̂R

11(E)ρ̂
(0)
11 (E)],

(2)
where Tr[Ô] represents the trace of operator Ô; T̂12 describes
the coupling between systems 1 and 2; ρ̂

(0)
11 (E) and ρ̂

(0)
22 (E)

are the density of states matrices associated with the decoupled
(T̂12 = 0) systems 1 and 2. Multiple-scattering effects are
included by means of the retarded and advanced denominator
functions D̂:

D̂A
11 = [I − T̂12Ĝ(0)A

22 T̂21Ĝ(0)A
11 ]−1

D̂R
22 = [I − T̂21Ĝ(0)R

11 T̂12Ĝ(0)R
22 ]−1.

(3)

We are interested in calculating the conductance of a
defected nanotube, but we are not including in this analysis
the effect of realistic contacts. The simulation geometry will
thus consist of a device region where the nanotube containing
the defects is connected to two semi-infinite perfect tubes (L
and R) that act as left and right electrodes (see figure 1); the
density of states of the electrodes is calculated using standard
decimation techniques. The conductance along the defected
region of the nanotube is calculated by an iterative procedure,
starting on the left electrode L, and including at each step a
random number of ideal layers of nanotube (shown as ‘· · ·’
in figure 1) as well as the block (supercell) of the nanotube
containing the defect, and whose most stable reconstruction
has been obtained using Fireball’96 (labeled as c1 and c2 in
the same figure). After the inclusion of a new defect, the
conductance between the ‘left side’ of the system (consisting
of the left lead and the increasing number of ideal and defected
layers of nanotube) and the right electrode (which remains
invariable during the process) is calculated. In this way, we
can calculate the conductance as a function of the number
of defects included (and thus of the length of the tube) for
different random configurations of defects distributed along the
nanotube with a given mean distance d between them. The
length L of the tubes is obtained from L = Nd , where N is
the number of defects in the nanotube.

The main advantage of this linear-scaling numerical
procedure is the fact that the size of the matrices that we
need to invert at each step does not increase with the size
of the system, but remains constant and equal to the size
of the defected region of the nanotube. In this way, we
can calculate the conductance for mesoscopic size tubes with
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Figure 1. Nanotube scheme as considered for performing the conductance calculation: L and R are the semi-infinite ideal nanotubes that
act as left and right electrodes; the central region is the defected nanotube, consisting of one or more blocks of ideal (‘· · ·’) or defected
(c1, c2, . . .) nanotube.

Figure 2. Relaxed geometries of the (5, 5) (top left), (7, 7) (top right)
and (10, 10) (bottom) SWCNTs with a single monovacancy. Only the
area around the defect (six layers) is shown.

different concentrations of defects without a very expensive
computational effort.

The hopping or coupling between the layers of nanotube
is assumed to be the coupling between the bulk layers of ideal
nanotubes. For this reason, it is essential that the number of
layers included in the supercell of the ab initio simulations is
large enough that the surface layers of the supercell are not
being affected by the perturbation caused by the defect and can
be regarded as ‘ideal’ bulk layers.

At zero temperature, the conductance for an infinitesimal
voltage is calculated just by the evaluation of the differential
conductance g(E) at the Fermi level Ef. However, at finite
T there will be more states accessible to the electrons and the
calculation of the conductance will be performed by means of
the following expression [16]:

G =
∫ +∞

−∞

(
−d fT (E)

dE

)
g(E) dE, (4)

where

fT (E) = 1

e
E−EF
kB T + 1

(5)

is the Fermi distribution function. In this way, the total
conductance at a given temperature is calculated as the total

Table 1. Maximum and minimum diameters for (5, 5), (7, 7) and
(10, 10) nanotubes with a single monovacancy and comparison of
�Emonovac for the relaxed geometries.

CNT dideal (Å) dmin (Å) dmax (Å) �Emonovac (eV)

(5, 5) 6.97 6.56 7.34 16.62
(7, 7) 9.76 9.36 10.20 17.41
(10, 10) 13.89 13.86 14.76 17.42

contribution from all the electronic states included in the
thermal energy window opened by the finite temperature.

3. Analysis of a single defect

Theoretical simulations [17, 18] suggest that Ar+ irradiation
of carbon nanotubes will mainly create monovacancies and
divacancies along the nanotube. We have therefore studied
the monovacancy and the two possible orientations of the
divacancy, which we will refer to as vertical (if the orientation
of the chain of missing atoms is perpendicular to the nanotube
direction) and lateral (if the orientation is partially parallel to
the tube axis).

3.1. Monovacancies

The structural and electronic properties of vacancies in CNTs
and other graphene-based materials have been extensively
analyzed in the literature (see, for instance, [19–24]). The
extraction of one single atom in the nanotube leads to
a metastable state, that favours recombination of nearest
neighbors to fill the empty space left by the vacancy.

3.1.1. Effect on the geometry. The relaxed geometries of
the (5, 5), (7, 7) and (10, 10) SWCNTs containing a single
monovacancy are shown in figure 2. After the relaxation,
we found that new bonds are formed between the neighbors
of the extracted atom, favoring three-atom against two-atom
coordination. This well-known recombination of atoms is
found in the three types of armchair CNTs analyzed in this
work.

The tube diameter is also affected by the extraction of the
single atom. It decreases in the zone of the defect and reaches
its maximum value at a distance of ≈5 Å from the defect,
recovering the diameter of the ideal tube at the surface layer
of the supercells used in our simulations. Table 1 shows the

3
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Figure 3. Relaxed geometries of the (5, 5) (top left), (7, 7) (top right)
and (10, 10) (bottom) SWCNTs with a vertical divacancy. Only the
area around the defect (six layers) is shown.

diameter (d) for ideal tubes as well as minimum and maximum
diameter for defected ones.

3.1.2. Energetics. The analysis of the energetics of the
monovacancy has been performed for each CNT by means
of the following difference of total energies, that allow us
to compare total energies for systems containing different
numbers of atoms:

�Emonovac ≡ |Eideal − (Emonovac + Eatom)|, (6)

where Eideal is the total energy for an ideal tube calculated for a
supercell containing the same number of layers as the supercell
for the defected tube, Emonovac is the total energy of the relaxed
nanotube containing the monovacancy, and Eatom is the energy
for the free atom. The energy difference �Emonovac for each
tube is also shown in table 1.

3.2. Divacancies

Divacancies are created by extracting a second atom from the
nanotube, leading to two possible orientations of the divacancy
depending on which atom is extracted: removing the atom
placed just above (or below) the first atom extracted will create
a vertical divacancy (figure 3), whereas the lateral divacancy is
formed by the extraction of the atom located to one side of the
monovacancy (figure 4).

3.2.1. Effect on the geometry. We have found a similar
reconstructed geometry for the three CNTs analyzed: atomic
relaxation leads to a new geometry formed by two pentagons
and an octagon. As for the monovacancy case, the diameter
decreases locally in the zone containing the defect, but the
effect is much more pronounced for the case of the lateral
divacancy (see table 2).

Figure 4. Relaxed geometries of the (5, 5) (top left), (7, 7) (top right)
and (10, 10) (bottom) SWCNTs with a lateral divacancy. Only the
area around the defect (six layers) is shown.

Table 2. Maximum and minimum diameters for (5, 5), (7, 7) and
(10, 10) nanotubes with a vertical and lateral divacancy and
comparison of � for the relaxed geometries.

CNT
dideal

(Å)
dmin

(Å)
dmax

(Å)
�
(eV)

(5, 5) vertical divacancy 6.97 6.99 7.19 4.3
(5, 5) lateral divacancy 6.97 6.64 7.28 6.5

(7, 7) vertical divacancy 9.76 9.72 9.99 4.8
(7, 7) lateral divacancy 9.76 9.36 10.02 6.7

(10, 10) vertical divacancy 13.89 13.88 14.07 4.2
(10, 10) lateral divacancy 13.89 13.72 14.65 6.7

3.2.2. Energetics. The energy formation of the divacancies
has been calculated in a similar way to the one in the case of
the monovacancy. Now,

�Edivac ≡ |Eideal − (Edivac + 2 × Eatom)|. (7)

According to the calculated energy formation, lateral
divacancies are about 2 eV more stable than vertical ones for
all the nanotubes analyzed.

We can also estimate the energy for an ideal system with
two monovacancies infinitely separated using

E2vac = Eideal − 2(Eideal − Evac). (8)

Comparing this energy difference �Edivac with the previously
calculated �Emonovac

� ≡ |�Edivac − 2 × �Emonovac|, (9)

we have found that formation of a lateral divacancy is between
6 and 7 eV more stable, for all CNTs studied, than formation
of two monovacancies. Energy formation values for vertical
divacancies are for all tubes between 4 and 5 eV smaller than
those of the lateral ones when compared to the case of two
isolated monovacancies. Thus, lateral divacancy formation on
CNTs is preferred over that of vertical ones, and especially over
formation of isolated monovacancies. Results are summarized
in table 2.
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Figure 5. Conductance as a function of energy for the (10, 10)
SWCNT with a single monovacancy, before relaxation.

3.3. Scattering of a single defect at zero temperature

Although a large number of theoretical works have been
performed to analyze the scattering produced by single defects
(either topological or substitutional impurities), it is worth
mentioning that a full relaxation of the atomic region around

the defect is particularly important in the case of vacancies,
where the energetically more stable reconstructed vacancy
will present a different electronic structure to the ideal (non-
reconstructed) one, leading to a very different behavior of
the conductance and other transport properties, especially for
energies close to the Fermi level.

In the case of a π–π tight-binding model [25], a
monovacancy in an armchair CNT will produce a drop of
almost one conductance quantum, G0 = 2e2/h, right at the
Fermi level, with the electron–hole symmetry fully preserved.
The conductance of a single ideal monovacancy, that is, in the
metastable non-reconstructed state, will also lead to a drop of
almost 2e2/h, not at the Fermi level but somewhat below at
the valence band, as shown in figure 5 (where the Fermi energy
has been set to zero). This result agrees with previous ab initio
calculations [26, 27].

However, the situation is very different in the case
of the most stable reconstruction. Figure 6 shows the
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Figure 6. Conductance as a function of energy for the (5, 5) (top left), (7, 7) (top right) and (10, 10) (bottom) SWCNTs with a single
monovacancy after relaxation.
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Figure 7. Conductance as a function of energy for the (5, 5) (top left), (7, 7) (top right) and (10, 10) (bottom) SWCNTs with a single vertical
divacancy after relaxation.
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Figure 8. Conductance as a function of energy for the (5, 5) (top left), (7, 7) (top right) and (10, 10) (bottom) SWCNTs with a single lateral
divacancy after relaxation.

conductance as a function of the energy for the (5, 5),
(7, 7) and (10, 10) nanotubes with a single monovacancy
after relaxation. Rearrangement of atoms has favoured the
saturation of dangling bonds, and the reconstructed nanotube
presents a conductance much more similar to the ideal case
for low energy than that of the metastable monovacancy.
In particular, there is a very small drop in the conductance
for energies in the vicinity of the Fermi level, and the
narrow peaks in the conduction band due to the unsaturated
σ bonds that are present for the non-reconstructed geometry
have disappeared. As expected, the drop in the conductance
decreases with increasing diameter of the nanotubes, being
practically negligible for the (10, 10) tube. This is in good
agreement with previous calculations [27, 28].

The drop of the conductance is much larger for both
orientations of the divacancy (see figures 7 and 8). In all cases a
maximum drop of about one conductance quantum is found for
the two orientations of the divacancy. This is also in agreement
with previous works [23].

As lateral divacancies are much more stable than the
vertical ones, and due to small drop in the conductance caused
by monovacancies, the results that we present include only
lateral divacancies.

4. Statistical analysis

Once the transport properties of the isolated defects in the
infinite nanotube have been characterized, we are interested in
calculating the conductance along a more realistic nanotube in
which defects can be randomly distributed along and around
the axis of the tube. Lateral divacancies are distributed
along the tube with the distance between consecutive defects
presenting a uniform random distribution between 0 and 2d , d
thus being the mean distance between defects for a particular
defect density. The calculation of the resistance (as the inverse
of the differential conductance) for each particular random
distribution of defects has been performed as explained in
section 2.2.
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Figure 9. Conductance as a function of energy for the (5, 5)
nanotube and a mean distance between defects of d = 10.1 nm for a
different number, N , of defects: N = 1, 3, 7, 10, 15 and 20 (from top
to bottom).

For each particular distribution of defects we can calculate
the conductance as a function of energy according to (4).
In figure 9 we plot the conductance around a small energy
region around the Fermi level for the (5, 5) nanotube and a
mean distance between defects of d = 10.1 nm for different
number of defects included in the nanotube. The nanotube
conductance presents strong fluctuations, with a maximum
value close to the conductance quantum and a minimum that
becomes smaller for an increasing number of divacancies. In
fact, the conductance never crosses the critical value of one
conductance quantum once a certain number of defects have
been included. This result can be very clearly seen in figure 10,
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Figure 10. Differential conductance at the Fermi level as a function
of the number of defects, N , for d = 75.5 nm for the (10, 10)
nanotube and for a selected number of the calculated random
distributions of defects.

where the conductance never reaches values higher than 1G0

after N = 5 [7]. To clarify this issue, we have diagonalized the
transmission matrix [30] to calculate the conductance for each
of the two conduction channels existing for energies around the
Fermi level. According to this, only one of the two conduction
channels is contributing to the total conductance once a number
of 5–9 divacancies are present in the nanotube. The origin of
this channel suppression remains, however, unclear.

The appropriately averaged resistance—according to the
theory of disordered one-dimensional systems [29]—for a
statistically significant number of random configurations of
defects (up to 100 in the case of zero temperature, and up to
15 for the room temperature case, where the dispersion with
respect to the mean value is much smaller) has been calculated
for mean distances d between 10.1 and 75.5 nm.

Figure 11 shows the resistance, for the (10, 10) CNT,
of a selected number of the calculated random distributions
of defects at both zero and room temperature. Curves with
the same color in left and right plots correspond to the same
configuration of defects. At zero temperature, the resistance for
each defect realization strongly fluctuates along the nanotube
length, showing the characteristic behavior of the disordered
1D system. The average resistance, however, presents a clear
exponential behavior as a function of the length, which is
a typical feature of strongly localized systems. At room
temperature, resistance fluctuations disappear for increasing

values of T , leading to very smooth curves when a critical
temperature (scaling with 1/d) is reached, but preserving
the exponential behavior. This confirms the presence of the
Anderson localization regime at room temperature for the
defected nanotubes studied. This result has been confirmed
by experimental data [6, 31].

Figure 12 shows the averaged resistance for different mean
distances at room temperature for the (7, 7) nanotube. For all
defect densities studied we have found the strongly localized
regime and the exponential increase of the resistance as a
function of the tube length. We can then fit the average
resistance for every d to the expression

R(L) ∼ R0 eL/L0 , (10)

where L is the length of the nanotube calculated as L = Nd
and L0 is the localization length. In this way we can calculate
the localization length L0 for every defect density. These
results for the (7, 7) nanotube are summarized in figure 12
(right). A detailed analysis of the methodology and theoretical
results obtained at different temperatures, as well as the
experimental data supporting these conclusions, can be found
in [6, 7] for the (10, 10) and in [31] for the (5, 5).

5. Conclusions

In summary, we have analyzed, by means of a combination
of ab initio simulations and linear-scaling Green’s functions
techniques, transport properties of armchair (5, 5), (7, 7) and
(10, 10) carbon nanotubes with realistic disorder, namely
monovacancies and divacancies. In a first step, first-principles
simulations for each defect have been performed in order to
determine the most stable reconstructions. The conductance
profile for every defect has been then analyzed. Our results
show that reconstructed monovacancies present an almost
negligible drop of the nanotube conductance at the Fermi level
compared to that of divacancies. As the lateral orientation
of the divacancy is found to be about 2 eV more stable than
the vertical one for all the nanotubes considered, only lateral
divacancies have been included in our analysis of long tubes
with different defect densities. Using an O(N) recursive
procedure based on standard Green’s functions techniques

0 5 10 15 20 25

number of defects

0

2

4

6

8

10

ln
(2

R
/R

0)

0 5 10 15 20 25

number of defects

0

1

2

3

4

5

ln
(2

R
/R

0)

Figure 11. (10, 10) CNT: colored lines: ln(2R/R0) as a function of the number of defects, N , for d = 75.5 nm and for a selected number
of the calculated random distributions of defects at T = 0 (left) and T = 300 K (right). Thick black lines: averaged resistance for the total
number of defect realizations considered. Gray shadowed region: mean quadratic deviation with respect to the averaged resistance value.
R0 is the inverse of the conductance quantum G0.
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Figure 12. Left: averaged ln(2R/R0) for different mean distances between defects d at room temperature for the (7, 7) nanotube.
Right: values for L0, calculated by means of (10), as a function of d for the same nanotube.

we have calculated the localization length for several defect
densities, predicting the existence of the Anderson localization
regime for defected carbon nanotubes at room temperature.
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